aggregation tool that allows a bit of fuzz to aggregating ?

Deepak Jain deepak at ai.net
Tue Jun 15 11:27:47 UTC 2021


We use Perl to accomplish this kind of thing.

We blackhole /32s, when we have “enough” of them in the same /24, we remove the /32s after inserting a covering /24. This is a 4 line script, along the same lines of the sed and python suggestions.

Our threshold is pretty low. If we see 4 simultaneous bad actors from the same /24 it’s gone. But we have a very fair process of putting them back into use, think fail2ban.

Best,

Deepak


On Jun 14, 2021, at 3:51 AM, Chris Hartley <hartleyc at gmail.com> wrote:


I guess something like this... maybe? Surely someone has already done this much better, but I thought it might be a fun puzzle.

# Let's call it aggregate.py.  You should test/validate this and not trust it at all because I don't.  It does look like it works, but I can't promise anything like that.  This was "for fun."  For me in my world, it's not a problem that needs solving, but if it helps someone, that'd be pretty cool.  No follow-up questions, please.

./aggregate.py gen 100000 ips.txt # Make up some random IPs for testing
./aggregate.py aggregate 2 ips.txt # Aggregate...  second argument is the "gap", third is the filename...

Most are still going to be /32s.
Some might look like this - maybe even bigger:
27.151.199.176/29<http://27.151.199.176/29>
33.58.49.184/29<http://33.58.49.184/29>
40.167.88.192/29<http://40.167.88.192/29>
63.81.88.112/28<http://63.81.88.112/28> # This is your example set of IPs with a gap (difference) of 2.
200.42.160.124/30<http://200.42.160.124/30>

"max gap" is the distance between IP addresses that can be clustered... an improvement might include "coverage" - a parameter indicating how many IPs must appear (ratio) in a cluster to create the aggregate (more meaningful with bigger gaps).

#!/your/path/to/python
import random
import sys

def inet_aton(ip_string):
       octs = ip_string.split('.')
       n =  int(int(octs[0]) << 24) + int(int(octs[1]) << 16) + int(int(octs[2]) << 8) + int(octs[3])
       return n

def inet_ntoa(ip):
       octs = ( ip >> 24, (ip >> 16 & 255), (ip >> 8) & 255, ip & 255 )
       return str(octs[0]) + "." + str(octs[1]) + "." + str(octs[2]) + "." + str(octs[3])

def gen_ips(num):
    ips = []
    for x in range(num):
        ips.append(inet_ntoa(random.randint(0,pow(2,32)-1)))
    # To make sure we have at least SOME nearlyconsecutive IPs...
    ips += "63.81.88.116,63.81.88.118,63.81.88.120,63.81.88.122,63.81.88.124,63.81.88.126".split(",") # I added your example IPs.
    return ips

def write_random_ips(num,fname):
    ips = gen_ips(int(num))
    f = open(fname,'w')
    for ip in ips:
        f.write(ip+'\n')
    f.close()

def read_ips(fname):
    return open(fname,'r').read(99999999).split('\n')

class Cluster():
    def __init__(self):
        self.ips = []
    def add_ip(self,ip):
        self.ips.append(ip)

def find_common_bits(ipa,ipb):
    for bits in range(0,32):
        mask = pow(2,32)-1 << bits & (pow(2,32)-1)

        if ipa & mask == ipb & mask:
            return 32-bits
        else:
            pass # print(f"{ipa} & (pow(2,{bits})-1) == {ipa & (pow(2,bits)-1)} ==!=== {ipb} & (pow(2,{bits})-1) == {ipb & (pow(2,bits)-1)}")

if len(sys.argv) == 4 and sys.argv[1] == "generate":
    write_random_ips(sys.argv[2],sys.argv[3])
elif len(sys.argv) == 4 and sys.argv[1] == "aggregate": # TODO: Let's imagine a "coverage" field that augments the max_gap field... does the prefix cover too many IPs?
    max_gap = int(sys.argv[2])
    fname = sys.argv[3]

    ips = [ inet_aton(ip) for ip in read_ips(fname) if ip!='' ] # ... it'd be a good idea to make sure it looks like an IP.  Oh, this only does IPv4 btw.

    ips.sort()

    clusters=[Cluster()] # Add first (empty) cluster.. is this necessary?  Who cares, moving on....
    last_ip=None
    for ip in ips:
        if last_ip != None:
            #print(f"Gap of {ip-last_ip} between {ip} and {last_ip}... {inet_ntoa(ip)} / {inet_ntoa(last_ip)}")
            if ip - last_ip <= max_gap:
                #print(f"Gap of {ip-last_ip} between {ip} and {last_ip}...")
                clusters[-1].add_ip(ip)
            else:
                cluster=Cluster()
                cluster.add_ip(ip)
                clusters.append(cluster)
        last_ip = ip

    for cluster in clusters:
        if len(cluster.ips) == 0:
            continue
        if len(cluster.ips) > 1:
            first_ip=cluster.ips[0]
            last_ip=cluster.ips[-1]
            num_bits = find_common_bits(first_ip,last_ip)
            mask = pow(2,32)-1 << (32-num_bits) & (pow(2,32)-1)
            network = first_ip & mask
            print(f"{inet_ntoa(network)}/{num_bits}")
        else:
            print(f"{inet_ntoa(cluster.ips[0])}/32")
else:
    print("Usage:")
    print("{0} generate [number of IPs] [file name] # Generate specified number of IPs, save to [file name]")
    print("{0} aggregate [max gap] [file name] # Aggregate prefixes based on overlapping subnets/IPs per the max gap permitted...")
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.nanog.org/pipermail/nanog/attachments/20210615/20c0681d/attachment.html>


More information about the NANOG mailing list